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A first-principles theoretical study of atomic-related core levels (ARCL’s) of atoms in a bond, for 30 binary
compounds crystallizing in zinc-blende or rocksalt structures, is presented. It is shown that (i) the ARCL
energies of a given element bonded in isostructural compounds are lower for compounds with higher bulk
moduli and vice versa, and (ii) in elemental crystals, the minima of ARCL energies calculated as a function of
the lattice constants coincide with the equilibrium values corresponding to minima of the total energy of the
crystals. In addition, the examples demonstrate that the differences between ARCL’s of the same element in
different compounds can be applied for the analysis of core-level shifts in the initial-state approximation.
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I. INTRODUCTION

Density functional theory (DFT) is primarily a theory of
ground-state electronic structure of atoms, molecules, and
solids, considering the electronic density distribution n(r) as
a quantity playing the essential role.! Within the local density
approximation (LDA) to DFT, the ground-state density n(r)
of an interacting system can be obtained by the self-
consistent solution of the set of Kohn-Sham (KS) equations?

(V2 + Verl (n(r) 1)) = €¢hi(x), (1)

with

% 2)

n(r) = 2 |¢(r)

where the summation is over occupied KS single-particle
orbitals ¢; of corresponding single-particle eigenvalues e;.

The standard application of total energy calculations to a
solid usually results in determining the static equilibrium
properties, e.g., the equilibrium crystal structure, lattice con-
stant a(, bulk modulus B, its pressure derivative B(;, elastic
constants, etc. In addition, also single-particle KS energies ¢;
belong to ground-state properties of atoms in a solid that are
unambiguously determined by n(r). Basically, they have no
rigorous physical meaning, and are considered just as auxil-
iary quantities in KS equations. In fact, €’s form a good
approximation for valence band structures of solids; how-
ever, they seriously underestimate the energy-band gaps in
crystals and removal energies from core levels of tightly
bound orbitals.

The solution of the KS equations Egs. (1) and (2), i.e.,
eigenvalues, eigenvectors, and the resulting electronic den-
sity distribution n(r), is determined by some accompanying
boundary conditions for the one-electron wave functions ¢,.
Both the valence and core states KS eigenvalues ¢;, the latter
denoted as the core energy levels of the constituent elements,
are determined with respect to energy zero of a given solid
that depends on the boundary condition for KS equations.
Since the periodic boundary condition leaves the additive
constant of the electrostatic term in the KS equations unde-
fined, the valence and core eigenvalues ¢; calculated for dif-
ferent solids cannot be mutually compared and, e.g., core-
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level shifts of the same element in different crystals cannot
be studied by direct comparison of calculated core eigenval-
ues €;. For such comparison, the crucial point is to relate the
energies €; to some energy zero E,., reasonably defined for a
particular atom in particular bonds. For this purpose, a pro-
cedure for determining a common reference energy E, ., had
been developed and applied in Refs. 3 and 4, where the de-
tails of this technique are described. We denote the energy
levels obtained by means of this technique as atomic-related
core levels (ARCL’s) and we use the symbol EEARCL) for their
values. The purpose of this paper is to demonstrate that these
quantities are correlated with important ground-state proper-
ties of compounds, and to verify usefulness of the concept of
ARCL’s in materials with significantly varying bond proper-
ties (e.g., ionic or covalent).

The paper is organized as follows: In Sec. II, we describe
computational techniques used in this work. In Sec. III, we
show correlations between ARCL’s and bulk moduli of sol-
ids. Section IV deals with the dependence of EEARCL) on the
lattice constant a of the crystal and shows that the minimum
of EgARCL)(a) corresponds to the equilibrium lattice constant.
In Sec. V, we demonstrate good agreement between mea-
sured core-level shifts and calculated differences of ARCL’s.
Finally, we summarize the presented results.

II. COMPUTATIONAL TECHNIQUES

In order to account for the influence of valence wave
functions on core levels of atoms in a bond, all-electron
methods for solving Kohn-Sham equations have to be em-
ployed. In this work, the LDA plane-wave all-electron
pseudopotential technique® is used. The technique self-
consistently adapts pseudopotentials and corresponding core
and valence wave functions to the chemical bond. The plane-
wave basis makes no shape approximations to either the va-
lence charge density or the effective potentials.® However,
since the present model is not dependent on any particular
technique, other sufficiently precise all-electron techniques
such as full-potential linearized augmented plane waves
(FLAPW) could be used as well.

The exchange-correlation energy is approximated by the
Ceperley-Alder functional.” The technical treatment of the
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semicore states participating in the chemical bond, of ex-
tended valence states, or of a significant charge transfer in
alkali chlorides is described in detail in Ref. 8. The lattice
constant, bulk modulus, and its volume derivative were ob-
tained by calculating the total energy for different values of
the unit-cell volume and by fitting the calculated data to the
Murnaghan equation of state.’

Concerning the technique for calculations of the atomic-
related core energy levels EEARCL), we point out here only the
main ideas. For a given atom within a solid, we choose a
sphere centered at the atom of interest, the radius of which
Ry, is determined so that the sphere contains exactly the
same amount of electronic valence charge (Q,,) as a neutral
atom does; we define Q,,=—On—Ocore» Where Qy is the
charge of the nucleus and Q. is the total charge of core
electrons. In other words, the radius is chosen so that the
sphere is electrically neutral as a whole.!® This condition
defines, via charge neutrality, the atomic sphere for the ele-
ment under study.

Inside of the atomic sphere, we perform an all-electron
self-consistent atomiclike calculation where, contrary to a
free atom, boundary conditions for valence states at RQval are
taken from the crystal charge density. In order to take into
account the nonsphericity affecting the angular-momentum
character of valence wave functions in the core region, par-
tial [-projected charges centered at the atomic positions are
calculated from the wave functions in a solid in the vicinity
of Ry - The partial charges and corresponding charge den-
sities at RQval serve as boundary and normalization conditions
for the valence radial wave functions calculated together
with their eigenvalues ¢; inside the atomic sphere.

An objection can arise concerning the nonsphericity of the
charge density at the radius Ry - Especially for cations in
ionic compounds, Ry, can interfere deeply with the neigh-
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boring atom. However, the question about the adequacy of
spherical approximation is not appropriate here because, in
fact, no assumptions about the sphericity of the charge dis-
tribution are necessary at this point. The sphere of Ro is
used for two purposes: (a) to determine the reference energy
E,.., by reflecting the slight relative variations of the charge
density, and (b) to form the potential boundary condition for
the reconstruction of core states. The first purpose is inde-
pendent of the adequacy of the spherical approximation since
the scheme can reflect relative charge transfers even for ar-
bitrarily nonspherical charge distribution, assuming that the
nonsphericity of the charge distribution is of a similar char-
acter for all the compounds in question. The concept of the
charge neutrality of the sphere that led to the definition of
E,.., is not based on any spherical approximation. The sec-
ond purpose is also independent of the sphericity of the
charge at Ro . since the core states are considered as spheri-
cal anyway and, in addition, the relatively localized core
states are practically insensitive with respect to potential be-
havior outside the large sphere.

As mentioned in the Introduction, the crucial point is to
find the reference energy zero E,., for a given element in
different bonds. Using Ro . determined above, we define the
value E,.;o=0a/ RQVal as the reference value for the atomic-
related core energy levels, which is the value of the potential
forming, in fact, the natural electrostatic boundary condition
for the valence-part Poisson equation.

The atomic-related core energy levels are then defined as

(ARCL)
E; =€—E 0

For a better intuitive understanding, it could be helpful to
realize that for a free atom, E,., is what determines the
electrostatic boundary condition for the Poisson equation:
zero Coulomb potential at infinity. In an analogous way, in a
solid E,.,, corresponds to the electrostatic potential at the
surface of the fictitious sphere that contains just enough elec-

TABLE I. Bulk moduli and ARCL’s for compounds with zinc-blende structure. The data for each compound are presented in a separate
cell, where (i) the ARCL in the upper-right corner of the cell (to the right from the formula of the compound) is related to the element and
electronic level symbols in the header of the table, (ii) ARCL in the lower-left corner of the cell (under the formula) is related to the element
and electronic level symbols on the left side of the table, and (iii) bulk modulus of each compound is given in bold in the center of the cell.
The energies are in hartree units; bulk moduli in GPa. The empty cell in the lower-left corner reflects the fact that BSb does not exist in the

zinc-blende structure.

B (Els) Al (EZS) Ga (E3s) In (E4S)
BN -7.6725 AIN -4.7901 GaN —-6.0280 InN —4.6942
391 205 203 163
N (Eyy) -16.3150 -16.2538 -16.2502 -16.1715
BP =7.6190 AlP -4.7616 GaP -6.0159 InP —4.6741
168 87.1 91.7 73.2
P (Ey) —7.9664 =7.9003 -7.9015 -7.8754
BAs -7.6174 AlAs —4.7567 GaAs —-6.0070 InAs —4.6711
148 77.6 76.7 64.2
As (E3) | -8.1578 ~8.1055 ~8.1014 ~8.0800
AlSb —4.7456 GaSb -5.9977 InSb —4.6618
59.6 61.9 52.6
Sb (Esy) -6.1789 -6.1790 -6.1611
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TABLE II. Bulk moduli and ARCL’s for rocksalt transition-metal carbides and nitrides. The data presentation is the same as in Table 1.

Vv (Els) Nb (EZS) Ti (E3s) Zr (E4s)
VN -23.2911 NbN -16.5266 TiN -20.5088 ZrN —-14.8936
383 361 331 290
N (Eyy) -16.2366 -16.2295 -16.2187 -16.2003
vC -23.2597 NbC -16.5101 TiC -20.4799 ZrC —14.8825
356 332 303 253
C (Eyy) —-11.5479 -11.5396 -11.5282 -11.5134

tronic charge for the full electrostatic screening of the
nucleus.

The details and justification of this ansatz are described
and discussed in the Appendix of Ref. 4.

III. CORRELATIONS BETWEEN THE ATOMIC-RELATED
CORE ENERGY LEVELS AND BULK MODULI OF
SOLIDS

Using the computational techniques described above, we
carried out the calculations of ARCL’s for all the elements in
A"LBY zinc-blende compounds, transition-metal carbides
and nitrides, and alkali chlorides in rocksalt structure. These
binary compounds with the tetrahedral and octahedral coor-
dinations also represent various types of bonds. The ARCL’s
were calculated for crystals with equilibrium lattice constants
corresponding to minimum total energies.

The results of the calculations are summarized in Tables
[-III. The three numbers presented for each system are the
bulk modulus of the compound and the atomic-related core
energy level of subvalence core orbital for both constituent
atoms. The crucial outcome from these tables is the correla-
tion between the bulk moduli and ARCL’s that can be ex-
pressed by the following rule: The EI(.ARCL) core energy levels
of a given element bonded in isostructural compounds are
lower in compounds with higher bulk moduli and vice versa.

There is no exception from this rule for the 27 compounds
shown in Tables I-III. Additionally, we did not find any ex-
ception for the group-IV compounds (e.g., C, SiC, and Si),
for the II-VI compounds (e.g., ZnS, ZnSe, and ZnTe), and for
the series of compounds with hexagonal CdlI, structure.'!

In all tables, we present only the subvalence core s orbit-
als because all deeper (more inner core) orbitals correlate
with the bulk moduli in a similar way as the orbitals pre-
sented in the tables.

In Table I we arranged the compounds with zinc-blende
structure in rows and columns with respect to atomic num-

bers, i.e., from left to right and from top to bottom, the
atomic numbers of the constituent atoms increase. The bulk
moduli B, of the compounds (bold numbers) decrease in the
rows and columns in Table I with two exceptions: B[ AlP]
< By|GaP] and B[ AISb] < By[GaSb]. In these two cases, the
decrease of bulk moduli when going in rows from left to
right is reversed, and also the monotonous behavior of
ARCL’s of P and Sb is reversed for these compounds, re-
spectively. It should be noted that the calculated relations
between bulk moduli including both exceptions mentioned
above are in full agreement with experimental data.'”

The relations between bulk moduli and lattice constants
for diamond and zinc-blende solids were studied by Cohen'3
and Lam et al.'* Both studies present simple empirical for-
mulas demonstrating that for the computation of bulk
moduli, only the nearest-neighbor distances are required as
an input. Wang and Ye'3 observed the linear relation between
the bulk moduli and the inverse of unit-cell volumes for the
group IV and III-V zinc-blende materials. All these results
nicely correlate with the fact that the unit-cell volumes V() of
the compounds in Table I increase in columns and rows in
the same way as atomic numbers, with only three exceptions:
Vo[AIP]>V[GaP], V,[AlAs]>V,[GaAs], and V,[AISb]
> V,[GaSb]. Excluding the case of AlAs vs GaAs (where
Vo[ AlAs] is nearly the same as V[ GaAs]), the approximate
relation By~ 1/V,, is apparent for compounds in Table 1.

The remarkable result of our core-level study (30 ARCL’s
in Table 1) is that the core levels correlate with bulk moduli
without any exception—even in the three irregular cases
mentioned above.

In Table II, the compounds with rocksalt structure are
arranged so that the bulk moduli are decreasing from left to
right and from top to bottom. As concerns the relation be-
tween bulk moduli and the atomic numbers, the trends are
reversed with respect to Table I, i.e., atomic numbers of the
elements of the same row of the Periodic Table decrease
(e.g., V? vs Ti?%, Nb*! vs Z1*0, or N7 vs C%). The reason for

TABLE III. Bulk moduli and ARCL’s for rocksalt alkali chlorides. The data presentation is similar as in
Table I. Both E | and E,; are listed to illustrate the parallel changes in both energy levels. The core levels for
Li, Na, K, are Rb are not listed since the direct comparison of the core levels of different kinds of atoms has

no meaning.

LiCl 39.2 NaCl 33.1 KCl 24.0 RbCl 21.3
Cl (Eyy) —-101.584 -101.538 -101.533 -101.530
Cl (Eyy) —-11.1984 —11.1541 —11.1480 —11.1445
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this difference originates from the different numbers of va-
lence electrons in bonding. Contrary to the materials in Table
I, the materials in Table II are not isoelectronic compounds.
The compounds with the highest number of valence elec-
trons (VN and NbN) have the highest bulk moduli; the com-
pounds with the lowest number of valence electrons (TiC and
7ZrC) have the smallest bulk moduli. These results indicate
that the additional electrons increase the charge participating
in the bonds and strengthen them. Since the ARCL’s reflect
electron charge distribution, it is plausible to accept a rela-
tion between the core energies and the strength of the bonds.
We see that the relative differences between bulk moduli in
Table II are smaller than in Table I, and the same trend is
observed for corresponding ARCL’s.

Table III shows the trends for the highly ionic bonds of
chlorides. Here, the atomic numbers of the cations are in-
creasing and the bulk moduli decreasing from left to right in
the same way as in Table I. The changes of core levels of
chlorine follow the changes of bulk moduli.

The rule correlating ARCL’s with bulk moduli, demon-
strated by the results shown in Tables I-III, has an empirical
character. The correlation can be qualitatively understood on
the basis of an idea that as the valence charge moves from
the core region to the bond region, the strength of the bond
increases. Simultaneously, the transfer of valence charge
from the core region to the bond region decreases the screen-
ing of the nucleus, which results in shifting the core levels to
lower energies (i.e., deeper levels). As a consequence, all the
ARCL’s in Tables I-III are lower than corresponding ener-
gies in free atoms.

The bulk moduli, however, depend not only on the
strength of the bond but also, e.g., on the numbers and di-
rections of the bonds, i.e., on the structure. At the same time,
screening the nucleus by valence electrons depends on push-
ing the valence charge by directional bonds into the intersti-
tial region, i.e., on the structural coordination. This implies
the condition of the isostructurality of compounds in the rule.

As an example of the structural aspect, two structurally
different series of nitrides are presented: the tetrahedral se-
ries BN, AIN, GaN, and InN in Table I, and the octahedral
series TiN, VN, ZrN, and NbN in Table II. The four typical
tetrahedral sp> bonds in the zinc-blende nitrides undoubtedly
screen the nitrogen core differently from the six octahedral
s-p bonds in the rocksalt nitrides. This example demonstrates
why there is no straightforward link between the ARCL’s of
nitrogen in Tables I and II.

IV. DEPENDENCE OF THE ATOMIC-RELATED CORE
ENERGY LEVELS ON THE LATTICE CONSTANT
OF A CRYSTAL

The atomic-related core energy levels EEARCL) presented
in Tables I-IIT were calculated for crystals in equilibrium,
i.e., with lattice constants a., corresponding to minima of
total energies E,;. In this section, we study the ARCL’s
EEARCL)(a) subject to changes of the lattice constant a at the
neighborhood of a.q. In that way, by changing the lattice
constant, it is possible to simulate both positive and negative
pressures.
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FIG. 1. The upper panel illustrates the opposite trends of 1s
eigenvalue £, (White squares; scale on the left vertical axis) and
the reference energy zero —E,,, (full squares; scale on the right)
with the lattice constant a in Si crystal. The negative sign reflects
the subtraction of E,., in evaluating the resulting atomic-related
core level as E(ARCL)(G) g,(a)—E o(a) [i=(1s) in this case]. Values

of EE?:;CL)(”) are depicted in the lower panel as white squares con-
nected with a dashed line. The thin solid line is the least-squares
parabolic fit. The bold solid line connecting white circles represents
the Murnaghan fit to the calculated values of the total energy (Ref.
9) (scale on the right vertical axis).

Under hydrostatic pressure, the widths of the valence
bands tend to increase because of the increased overlap of
the wave functions of neighboring atoms. Simultaneously,
the increase of the electron density caused by the pressure
increases the screening of the nuclear charge, which results
in upward shifts of core levels (see, e.g., Ref. 16). On general
grounds, one can expect that if a crystal is compressed or
stretched (i.e., the positive or negative pressure is applied),
the total energy of the crystal is increased by means of ex-
erting an external work and the electron energy levels are
shifted upward.

Using the same computational techniques as in the pre-
ceding section, we calculated EEARCL) for elemental silicon,
diamond, and aluminum crystals (diamond and fcc structure,
respectively) at lattice constants close to equilibrium values
@eq- The results are presented in Figs. 1-3. The notable result
of these calculations is the correlation of the positions of the
minima of the EEARCL)(a) curves with a.,. We can see that
within the numerical accuracy of the computations, the
minima of EEARCL)(a) correspond to the total energy minima
of the crystal as a function of the lattice constant a, in agree-
ment with the general arguments mentioned above.

The correlation of the minima of the total energy E, with
E(ARCL (a) in Figs. 1-3 is a result of nontrivial calculations,
since the minima of the E(ARCL)(a) curves arise as a result of
the sum of two counteracting quantities, namely, the refer-
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FIG. 2. Plot analogous to Fig. 1 depicting 1s eigenvalue, refer-

ence energy zero, atomic-related core level, and total energy as a
function of the lattice constant for carbon in the diamond structure.

ence energy E,., and the corresponding eigenvalues ¢;. In
the case of decreasing lattice parameter, the charge density
increases. Consequently, the —FE,., goes downward; how-
ever, the eigenvalue goes upward (cf. the upper panels of
Figs. 1-3). The opposite applies in the case of increasing
lattice constant a.

The fluctuations around the least-squares fit to the
EEARCL)(a) values can be understood by taking into account
that just the deviations of the curves in the top part from
linear dependence are responsible for forming the minimum
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FIG. 3. Plot analogous to Fig. 1 depicting 1s eigenvalue, refer-
ence energy zero, atomic-related core level, and total energy as
functions of the lattice constant for an Al crystal.

PHYSICAL REVIEW B 77, 045112 (2008)

and that all the dependencies range in fractions of eV.

Atomic-related core levels in a system of different struc-
tures with varying coordination numbers were studied for the
case of ScN in Ref. 4. Structural phases of ScN with lower
total energy had deeper ESARCL)(a)’s for both Sc and N at-
oms, and vice versa, which correspond to the results pre-
sented in this section.

V. CORE-LEVEL SHIFTS AND DIFFERENCES OF
ATOMIC-RELATED CORE LEVELS

Experimentally measured core-level shifts are interpreted
in terms of the initial-state (local charge density) and final-
state (core-hole relaxation) effects. Supposing that no exter-
nal fields are present, the initial-state effects to core levels
are fully determined by the local charge density distribution
around the atom under study that reflects also the changes
due to the bonds to neighboring atoms, e.g., due to their
ionicity. Therefore, the calculations based on the self-
consistently determined local charge density distribution
around an atom are applied.

As mentioned in the Introduction, even though the eigen-
values ¢ in the KS equations have no rigorous physical
meaning, their differences form a good approximation for
valence band structures of solids. The EEARCL)’S alone also
have no rigorous physical meaning. However, contrary to the
€;, their magnitude is now related to a common reference
level in different materials. This makes it meaningful to cal-
culate the ARCL’s for atoms in different chemical environ-
ments and to compare these differences with experimentally
measured core-level shifts.

As an example of this approach, we present here several
experimental data together with calculations based on differ-

(ARCL)s
ences of E; S.

(i) The core-level shifts in tetrahedrally bonded Si(;_,,C,
(0=<x=<1) were measured by means of photoemission by
Fang and Ley.!” For the limiting cases x=0 and x=1, the
authors obtained a shift of —1.43+0.07 eV for the C 1s level
(i.e., an upward shift) and a shift of 1.20+0.07 eV for the
Si2p levels (i.e., a downward shift). Our calculation, based
on the differences between the corresponding EEARCL)’S,
yields the values —1.49 eV for the C 1s level and 1.63 eV for
the Si2p level.’

(ii) Experimental core-level shifts of Si as applied for
structural studies of SiN,-H and SiO,-H were presented in
Refs. 18 and 19. In these alloys, the silicon atom can be
surrounded by four atoms, forming Si-N, or Si-O, tetrahe-
dra, respectively. As discussed in the references mentioned
above, the core-level shifts originate as a consequence of
changes of the nearest neighbors of silicon atoms affecting
the core states, i.e., they can be considered as an initial-state
effect. The measured shift of the Si2p level in SiN, com-
pounds related to the Si2p level in silicon is 0.78 eV per
Si-N bond (see Refs. 20 and 21, and photoemission data).
For Si-N, tetrahedron, it yields 3.12 eV, in good accordance
with the value of 3.2 eV measured by x-ray emission spec-
troscopy (in Ref. 18). In the case of SiO,-H, the measured
shift of the Si 2p level between Si-Siy and Si-O, tetrahedra is
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4.2 eV (see the photoemission spectroscopic data'® and x-ray
emission spectroscopic data’?). Calculations based on the
ARCL differences for Si-N, and Si-O, tetrahedra with re-
spect to Si-Siy yield the core-level shifts of Si 2p levels with
the value of 3.02 eV for Si-N, and 4.24 eV for Si-Oy, in
good agreement with the experimental data.

It should be noted that the calculations based on the initial
state, neglecting the final-state effects, cannot be used to ex-
plain the observed experimental chemical shifts generally.
The cases mentioned above have been chosen so that the
final-state effect could be considered as equal for the com-
pared cases, as well as the transition matrix elements, in
order to demonstrate that our description of the initial-state
effects is adequate. The effects of the final state and the
particular characteristics of the excitation process in a par-
ticular experimental arrangement are not the subject of this

paper.

VI. SUMMARY

Correlation between trends in ground-state properties of
solids and trends in ARCL’s discussed in the present paper is
a general feature of calculations based on LDA. In particular,
the following were demonstrated:

(i) Atomic-related core levels for a particular atom in vari-
ous isostructural compounds are lower in the compounds
with higher bulk moduli, and vice versa. This correlation rule
is demonstrated on 27 compounds crystallizing in zinc-
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blende and rocksalt structures with covalent, metallic, and
ionic bonds. We studied also other series of materials in vari-
ous structures. Until now, no exception from the rule was
found.

(ii) In elemental solids (Si, Ge, and Al), the positions of
total energy minima correlate to the minimum of the
E;ARCL)(a) curves at the equilibrium lattice constants a.q. The
decrease in total energies of ScN was reflected in the ARCL
shifts toward higher binding energies.

(iii) Comparing atomic-related core levels of at-
oms in different tetrahedral bonds can be used to analyze the
experimental core-level shifts within the initial-state approxi-
mation. For several cases, this approach yields surprisingly
good agreement with experiment.

The observed correlations testify a posteriori a significant
physics of the ARCL’s and the E,.,, concepts, both of which
are based on the analysis of the electronic charge density
distribution around atoms in bonds. The results indicate that
these concepts can provide a tool for the study of the ground-
state quantities of solids, such as, e.g., hardness.??

EEARCL)
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